logo

Strukturen og prinsippet i hjertet

Hjertet er et muskelorgan i mennesker og dyr som pumper blod gjennom blodårene.

Hjertefunksjoner - hvorfor trenger vi et hjerte?

Vårt blod gir hele kroppen oksygen og næringsstoffer. I tillegg har den også en rensende funksjon som bidrar til å fjerne metabolisk avfall.

Hjertets funksjon er å pumpe blod gjennom blodårene.

Hvor mye blod gjør en persons hjertepumpe?

Menneskets hjerte pumper rundt 7.000 til 10.000 liter blod på en dag. Dette er om lag 3 millioner liter per år. Det viser seg opptil 200 millioner liter i livet!

Mengden pumpet blod i løpet av et minutt avhenger av den nåværende fysiske og følelsesmessige belastningen - jo større belastningen er, jo mer blod kroppen trenger. Så hjertet kan passere gjennom seg selv fra 5 til 30 liter på ett minutt.

Sirkulasjonssystemet består av om lag 65 000 fartøy, deres totale lengde er ca 100 tusen kilometer! Ja, vi er ikke forseglet.

Sirkulasjonssystemet

Sirkulasjonssystem (animasjon)

Det menneskelige kardiovaskulære systemet består av to sirkler av blodsirkulasjon. Med hvert hjerteslag beveger blodet i begge sirkler på en gang.

Sirkulasjonssystemet

  1. Deoksygenert blod fra overlegen og dårligere vena cava går inn i høyre atrium og deretter inn i høyre ventrikel.
  2. Fra høyre ventrikel presses blod inn i lungekroppen. Lungartariene trekker blod direkte inn i lungene (før lungekapillærene), hvor det mottar oksygen og frigjør karbondioksid.
  3. Etter å ha fått nok oksygen, går blodet tilbake til venstre atrium av hjertet gjennom lungene.

Great Circle of Blood Circulation

  1. Fra venstre atrium flytter blod til venstre ventrikel, hvorfra det pumpes videre gjennom aorta inn i systemisk sirkulasjon.
  2. Etter å ha passert en vanskelig sti, kommer blod gjennom de hule venene igjen i hjertetes høyre atrium.

Normalt er mengden blod som utkastes fra hjertets ventrikler med hver sammentrekning den samme. Dermed strømmer et like volum blod samtidig inn i de store og små sirkler.

Hva er forskjellen mellom årer og arterier?

  • Vene er konstruert for å transportere blod til hjertet, og arterienes oppgave er å levere blod i motsatt retning.
  • I blodårene er blodtrykket lavere enn i arteriene. I tråd med dette er arteriene av veggene preget av større elastisitet og tetthet.
  • Arterier mætter det "friske" vevet, og venene tar "sløsing" blodet.
  • Ved vaskulær skade kan arteriell eller venøs blødning skiller seg ut av blodets intensitet og farge. Arteriell - sterk, pulserende, slående "fontene", blodets farge er lys. Venøs blødning med konstant intensitet (kontinuerlig strømning), blodets farge er mørk.

Den anatomiske strukturen i hjertet

Vekten til en persons hjerte er bare 300 gram (i gjennomsnitt 250g for kvinner og 330g for menn). Til tross for den relativt lave vekten er dette utvilsomt hovedmusklen i menneskekroppen og grunnlaget for dens livsviktige aktivitet. Størrelsen på hjertet er faktisk omtrent like liknende av en person. Idrettsutøvere kan ha et hjerte som er en og en halv ganger større enn for en vanlig person.

Hjertet ligger i midten av brystet på nivået på 5-8 ryggvirvler.

Normalt ligger den nedre delen av hjertet hovedsakelig i venstre halvdel av brystet. Det er en variant av medfødt patologi der alle organer er speilet. Det kalles transponering av indre organer. Lungen, ved siden av hvilken hjertet ligger (normalt til venstre), har en mindre størrelse i forhold til den andre halvdelen.

Hjertens bakside ligger i nærheten av ryggsøylen, og fronten er forsvarlig beskyttet av brystbenet og ribbenene.

Menneskets hjerte består av fire uavhengige hulrom (kamre) delt med partisjoner:

  • to øvre - venstre og høyre atria;
  • og to nedre venstre og høyre ventrikler.

Høyre side av hjertet inkluderer høyre atrium og ventrikel. Den venstre halvdelen av hjertet er representert av henholdsvis venstre ventrikel og atrium.

Den nedre og øvre hule vener går inn i høyre atrium, og lungene vender inn i venstre atrium. Den pulmonale arteriene (også kalt pulmonal stammen) utgang fra høyre ventrikel. Fra venstre ventrikel stiger den stigende aorta.

Hjerteveggstruktur

Hjerteveggstruktur

Hjertet har beskyttelse mot overbelastning og andre organer, som kalles perikardiet eller perikardialposen (en slags konvolutt hvor orgelet er vedlagt). Den har to lag: det ytre tette, faste bindevevet, kalt fibrøs membran av perikardiet og det indre (perikardial serous).

Dette følges av et tykt muskellag - myokard og endokardium (tynt bindevev indre membran i hjertet).

Således består selve hjertet av tre lag: epikardiet, myokardiet, endokardiet. Det er sammentrekningen av myokardiet som pumper blod gjennom kroppens kar.

Veggene til venstre ventrikkel er omtrent tre ganger større enn veggene til høyre! Dette faktum forklares av det faktum at funksjonen til venstre ventrikel består i å skyve blod inn i den systemiske sirkulasjonen, hvor reaksjonen og trykket er mye høyere enn i de små.

Hjerteventiler

Hjerteventil enhet

Spesielle hjerteventiler lar deg kontinuerlig opprettholde blodstrømmen i riktig retning (ensrettet retning). Ventilene åpner og lukker en etter en, enten ved å la blod inn eller ved å blokkere banen. Interessant er alle fire ventiler plassert i samme plan.

En tricuspid ventil er plassert mellom høyre atrium og høyre ventrikel. Den inneholder tre spesielle plate-sash, stand i løpet av sammentrekning av høyre ventrikel for å gi beskyttelse mot motstrømmen av blod i atriumet.

Tilsvarende fungerer mitralventilen, bare den er plassert i venstre side av hjertet og er bicuspid i sin struktur.

Aortaklappen forhindrer utstrømning av blod fra aorta inn i venstre ventrikel. Interessant, når venstre ventrikel kontrakterer, åpnes aortaklappen som følge av blodtrykk på den, så det beveger seg inn i aorta. Da, under diastolen (hjertens avslappingsperiode), bidrar den omvendte strømmen av blod fra arterien til lukking av ventiler.

Normalt har aortaklaffen tre folder. Den vanligste medfødte anomali i hjertet er bicuspid aortaklappen. Denne patologien forekommer hos 2% av befolkningen.

En pulmonal (lungeventil) ventil på tidspunktet for sammentrekning av høyre ventrikel tillater blod å strømme inn i lungekroppen, og under diastolen tillater det ikke å strømme i motsatt retning. Består også av tre vinger.

Hjerteskader og kransløpssirkulasjon

Det menneskelige hjerte trenger mat og oksygen, så vel som andre organer. Fartøy som gir (nærende) hjertet med blod kalles koronar eller koronar. Disse fartøyene avgrener seg fra basen av aorta.

Kranspulsårene forsyner hjertet med blod, koronarårene fjerner deoksygenerte blod. De arteriene som er på overflaten av hjertet kalles epikardial. Subendokardial kalles koronararterier skjult dypt i myokardiet.

Det meste av utløpet av blod fra myokardiet skjer gjennom tre hjerteår: stort, middels og lite. Danner den koronare sinus, de faller inn i høyre atrium. De fremre og mindre årene i hjertet leverer blod direkte til høyre atrium.

Koronararterier er delt inn i to typer - høyre og venstre. Sistnevnte består av de fremre intervensjonene og konvoluttarteriene. En stor hjerteår forgrener seg til hjerteens bakre, midtre og små blodårer.

Selv helt friske mennesker har sine egne unike egenskaper ved kransløpssirkulasjonen. I virkeligheten kan fartøyene se og plasseres annerledes enn vist på bildet.

Hvordan utvikler hjertet (form)?

For dannelsen av alle kroppssystemer krever fosteret sin egen blodsirkulasjon. Derfor er hjertet det første funksjonelle organet som oppstår i kroppen av et humant embryo, det forekommer omtrent i den tredje uken av fosterutvikling.

Fosteret i begynnelsen er bare en klynge av celler. Men i løpet av graviditeten blir de stadig mer, og nå er de forbundet, danner i programmerte former. Først dannes to rør, som deretter smelter sammen i en. Denne røret er foldet og rushing danner en sløyfe - den primære hjerteløkken. Denne sløyfen er foran alle de gjenværende cellene i vekst og blir raskt utvidet, så ligger til høyre (kanskje til venstre, hvilket betyr at hjertet vil være plassert speilaktig) i form av en ring.

Så, vanligvis den 22. dagen etter unnfangelsen, oppstår den første sammentrekningen av hjertet, og på den 26. dagen har fosteret sin egen blodsirkulasjon. Videreutvikling involverer forekomsten av septa, dannelsen av ventiler og remodeling av hjertekamrene. Avdelingsform ved femte uke, og hjerteventiler dannes av niende uke.

Interessant begynner hjertet av fosteret å slå med hyppigheten av en vanlig voksen - 75-80 kutt per minutt. Da, ved begynnelsen av den syvende uken, er pulsen ca. 165-185 slag per minutt, som er maksimalverdien, etterfulgt av en avmatning. Den nyfødte puls er i området 120-170 kutt per minutt.

Fysiologi - prinsippet om det menneskelige hjerte

Se nærmere på hjertets prinsipper og mønstre.

Hjerte syklus

Når en voksen er rolig, samler hjertet sitt rundt 70-80 sykluser per minutt. En takt av pulsen er lik en hjertesyklus. Med en slik reduksjonshastighet tar en syklus ca 0,8 sekunder. Av hvilken tid er atriell sammentrekning 0,1 sekunder, ventrikler - 0,3 sekunder og avslapningsperiode - 0,4 sekunder.

Frekvensen av syklusen er satt av hjertefrekvensdriveren (en del av hjertemusklen der impulser oppstår som regulerer hjertefrekvensen).

Følgende konsepter skiller seg ut:

  • Systole (sammentrekning) - nesten alltid, dette konseptet innebærer en sammentrekning av hjertekammerets ventrikler, noe som fører til blodspjeld langs arteriekanalen og maksimerer trykket i arteriene.
  • Diastole (pause) - perioden når hjertemuskelen er i avslapningsfasen. På dette punktet er hjertets kamre fylt med blod og trykket i arteriene reduseres.

Så måle blodtrykk alltid registrere to indikatorer. Som et eksempel, ta tallene 110/70, hva mener de?

  • 110 er øvre tallet (systolisk trykk), det vil si blodtrykket i arteriene ved hjerteslag.
  • 70 er det nedre tallet (diastolisk trykk), det vil si blodtrykket i arteriene ved hjerteoppblomstring.

En enkel beskrivelse av hjertesyklusen:

Hjerte syklus (animasjon)

På hjertet av avslapping, er atriene og ventriklene (gjennom åpne ventiler) fylt med blod.

  • Oppstår systole (sammentrekning) av atriene, som lar deg helt flytte blodet fra atria til ventriklene. Atriell sammentrekning begynner på stedet for tilstrømning av venene inn i den, noe som garanterer den primære komprimering av munnen og blodets manglende evne til å strømme tilbake i venene.
  • Atriene slapper av, og ventilene som adskiller atriene fra ventriklene (tricuspid og mitral) lukkes. Ventricular systole oppstår.
  • Ventricular systole skyver blod inn i aorta gjennom venstre ventrikel og inn i lungearterien gjennom høyre ventrikel.
  • Deretter kommer en pause (diastole). Syklusen gjentas.
  • For en pulspuls er det to hjerteslag (to systoler) - først atriene og deretter blir ventrikkene redusert. I tillegg til ventrikulær systole er det atriell systole. Sammentrekningen av atriene har ikke verdi i det målte arbeidet i hjertet, siden i dette tilfellet er avslappetiden (diastol) nok til å fylle ventriklene med blod. Men når hjertet begynner å slå oftere, blir atriell systole avgjørende - uten at ventriklene ganske enkelt ikke ville ha tid til å fylle med blod.

    Blodtrykket gjennom arteriene utføres bare med sammentrekning av ventriklene, disse pushes-kontraktions kalles pulser.

    Hjerte muskel

    Den unike egenskapen til hjertemusklen ligger i sin evne til rytmiske automatiske sammentrekninger, vekslende med avslapping, som foregår kontinuerlig gjennom livet. Myokardiet (midtmuskulaturlaget i hjertet) av atria og ventrikler er delt, noe som gjør at de kan trekke seg separat fra hverandre.

    Kardiomyocytter - Muskelceller i hjertet med en spesiell struktur som tillater spesielt koordinert å overføre en bølge av excitasjon. Så det er to typer kardiomyocytter:

    • Vanlige arbeidstakere (99% av det totale antall hjertemuskelceller) er utformet for å motta et signal fra en pacemaker ved hjelp av kardiomyocytter.
    • spesiell ledende (1% av det totale antall hjerte muskelceller) kardiomyocytter danner ledningssystemet. I sin funksjon ligner de nevroner.

    Som skjelettmuskulaturen kan hjertets muskel øke i volum og øke effektiviteten i arbeidet. Hjertevolumet av utholdenhetsutøvere kan være 40% større enn det for en vanlig person! Dette er en nyttig hypertrofi av hjertet, når den strekker seg og er i stand til å pumpe mer blod i ett slag. Det er en annen hypertrofi - kalt "sportshjertet" eller "hjertehjertet".

    Bunnlinjen er at noen idrettsutøvere øker muskelmassen, og ikke dens evne til å strekke seg og skyve gjennom store mengder blod. Årsaken til dette er uansvarlig utarbeidet treningsprogram. Helt fysisk trening, spesielt styrke, bør bygges på grunnlag av kardio. Ellers forårsaker overdreven fysisk anstrengelse på uforberedt hjerte myokarddystrofi, noe som fører til tidlig død.

    Kardial ledningssystem

    Hjertets ledende system er en gruppe spesielle formasjoner bestående av ikke-standardiserte muskelfibre (ledende kardiomyocytter), som tjener som en mekanisme for å sikre hjertesystemets harmoniske arbeid.

    Impulsbane

    Dette systemet sikrer hjerteautomatikken - eksitering av impulser født i kardiomyocytter uten ekstern stimulans. I et sunt hjerte er den viktigste kilden til impulser sinusnoden (sinusnoden). Han leder og overlapper impulser fra alle andre pacemakere. Men hvis noen sykdom oppstår som fører til syndromets svakhet i sinusknudepunktet, overtar andre deler av hjertet sin funksjon. Så atrioventrikulærknutepunktet (automatisk senter for den andre rekkefølge) og bunten av Hans (tredje ordens AC) kan aktiveres når sinuskoden er svak. Det er tilfeller der sekundære noder øker sin egen automatisme og under normal drift av sinusnoden.

    Bihulehodet er plassert i bakre bakveggen til høyre atrium i umiddelbar nærhet av munnen til den overlegne vena cava. Denne noden initierer pulser med en frekvens på ca. 80-100 ganger per minutt.

    Atrioventrikulær knutepunkt (AV) ligger i nedre del av høyre atrium i atrioventrikulær septum. Denne partisjonen forhindrer spredningen av impulser direkte inn i ventrikkene, omgå AV-noden. Hvis sinusknuten er svekket, vil atrioventrikulæret overta sin funksjon og begynne å overføre impulser til hjertemusklen med en frekvens på 40-60 kontraksjoner per minutt.

    Så passerer den atrioventrikulære knuten inn i bunten av Hans (atrioventrikulærbunten er delt inn i to ben). Høyre bein rushes til høyre ventrikel. Venstrebenet er delt inn i to halvdeler.

    Situasjonen med venstre ben av hans bunt er ikke fullt ut forstått. Det antas at venstre ben av den fremre delen av fibre rushes til den fremre og laterale veggen til venstre ventrikel, og den bakre grenen av fibrene gir bakveggen til venstre ventrikel og de nedre delene av sideveggen.

    Når det gjelder svakhet i sinusnoden og blokaden av atrioventrikulæren, er bunten av Hans i stand til å skape pulser med en hastighet på 30-40 per minutt.

    Ledningssystemet dypes og grener ut i mindre grener, og blir så til Purkinje-fibre som trenger gjennom hele myokardiet og fungerer som en transmisjonsmekanisme for sammentrekning av muskler i ventriklene. Purkinje-fibre er i stand til å initiere pulser med en frekvens på 15-20 per minutt.

    Unntatt velutdannede idrettsutøvere kan ha en normal hjertefrekvens i hvilemodus til det laveste innspilt antall - bare 28 hjerterytme per minutt! Men for den gjennomsnittlige personen, selv om det fører til en veldig aktiv livsstil, kan pulsfrekvensen under 50 slag per minutt være et tegn på bradykardi. Hvis du har en så lav puls, bør du undersøkes av en kardiolog.

    Hjerte rytme

    Den nyfødte hjertefrekvens kan være omtrent 120 slag per minutt. Ved å vokse opp stabiliserer pulsene til en vanlig person i området fra 60 til 100 slag per minutt. Velutdannede idrettsutøvere (vi snakker om personer med godt trente kardiovaskulære og respiratoriske systemer) har en puls på 40 til 100 slag per minutt.

    Hjertets rytme styres av nervesystemet - den sympatiske styrker sammentringene, og den parasympatiske svekkes.

    Kardial aktivitet, til en viss grad, avhenger av innholdet av kalsium og kaliumioner i blodet. Andre biologisk aktive stoffer bidrar også til regulering av hjerterytme. Hjertet vårt kan begynne å slå oftere under påvirkning av endorfiner og hormoner som blir utsatt når du lytter til favorittmusikken eller kysset ditt.

    I tillegg kan det endokrine systemet ha en signifikant effekt på hjerterytmen - og på frekvensen av sammentrekninger og deres styrke. For eksempel forårsaker utslipp av adrenalin ved binyrene en økning i hjertefrekvensen. Det motsatte hormonet er acetylkolin.

    Hjertefarger

    En av de enkleste metodene for å diagnostisere hjertesykdom er å lytte til brystet med et stetofonendoskop (auskultasjon).

    I et sunt hjerte, når man utfører standard auskultasjon, blir det bare hørt to hjerte lyder - de kalles S1 og S2:

    • S1 - lyden høres når atrioventrikulære (mitral og tricuspid) ventiler lukkes under systolisk (sammentrekning) av ventriklene.
    • S2 - lyden som gjøres ved lukking av semilunar (aorta og lunge) ventiler under diastolen (avslapping) av ventrikkene.

    Hver lyd består av to komponenter, men for det menneskelige øre smelter de sammen i en på grunn av den svært små tiden mellom dem. Hvis under normale auskultasjonsforhold blir ytterligere toner hørbare, kan dette tyde på en sykdom i kardiovaskulærsystemet.

    Noen ganger kan ytterligere uregelmessige lyder bli hørt i hjertet, som kalles hjertelyder. Tilstedeværelsen av støy indikerer som regel hvilken som helst patologi i hjertet. For eksempel kan støy føre til at blodet kommer tilbake i motsatt retning (regurgitation) på grunn av feil bruk eller skade på en ventil. Støy er imidlertid ikke alltid et symptom på sykdommen. For å klargjøre årsakene til utseendet av ekstra lyder i hjertet, er å lage en ekkokardiografi (ultralyd i hjertet).

    Hjertesykdom

    Ikke overraskende vokser antallet kardiovaskulære sykdommer i verden. Hjertet er et komplekst organ som faktisk hviler (hvis det kan kalles hvile) bare i intervaller mellom hjerteslag. Enhver kompleks og stadig arbeidsmekanisme i seg selv krever den mest forsiktige holdningen og konstant forebygging.

    Tenk deg hva en stor byrde faller på hjertet, gitt vår livsstil og lav kvalitet rikelig med mat. Interessant er dødeligheten fra hjerte-og karsykdommer ganske høy i høyinntektsland.

    De enorme mengder mat som forbrukes av befolkningen i rike land og den endeløse jakten på penger, samt de tilknyttede stressene, ødelegger vårt hjerte. En annen grunn til spredning av kardiovaskulære sykdommer er hypodynamien - en katastrofalt lav fysisk aktivitet som ødelegger hele kroppen. Eller tvert imot, den analfabetiske lidenskapen for tunge fysiske øvelser, ofte forekommende mot bakgrunnen av hjertesykdom, er det tilstedeværelsen av som folk ikke engang mistenker og klarer å dø rett under "helse" øvelsene.

    Livsstil og hjertes helse

    De viktigste faktorene som øker risikoen for å utvikle kardiovaskulære sykdommer er:

    • Fedme.
    • Høyt blodtrykk.
    • Forhøyet blodkolesterol.
    • Hypodynami eller overdreven trening.
    • Rikelig mat av lav kvalitet.
    • Deprimert følelsesmessig tilstand og stress.

    Gjør lesingen av denne store artikkelen et vendepunkt i livet ditt - gi opp dårlige vaner og endre livsstilen din.

    Hjertestruktur

    Hjertet er et hult firekammermuskelorgan. Hjertets størrelse svarer til omtrent nesenes størrelse. Massen av hjertet er i gjennomsnitt 300 g. Det ytre skallet i hjertet er perikardiet. Den består av to ark: en danner perikardialposen, den andre - det ytre skallet i hjertet - epikardiet. Mellom perikardiet og epikardiet er det et hulrom fylt med væske for å redusere friksjon mens hjertet er kontraherende. Hjertets midtre konvolutt er myokardiet. Den består av en striated muskelvev av en spesiell struktur (hjerte muskelvev). I det er tilstøtende muskelfibre sammenkoblet med cytoplasmiske broer. Intercellulære tilkoblinger forstyrrer ikke eksitering, slik at hjertemusklen er i stand til å raskt kontrakt. I nerveceller og skjelettmuskulatur er hver celle opptatt i isolasjon. Den indre foringen av hjertet er endokardiet. Den linjer hjertehulen og danner ventiler - ventiler.

    Menneskets hjerte består av fire kamre: 2 atria (venstre og høyre) og 2 ventrikler (venstre og høyre). Muskelveggene til ventriklene (spesielt venstre) er tykkere enn atriets vegg. I høyre del av hjertet flyter venøst ​​blod, i venstre-arterial.

    Mellom atria og ventrikler er det klappventiler (mellom venstre - bicuspid, mellom høyre tricuspid). Det er semilunarventiler mellom venstre ventrikel og aorta og mellom høyre ventrikel og lungearterien (de består av tre ark som ligner lommer). Hjertets ventiler gir blodbevegelsen i bare én retning: fra atriene til ventriklene og fra ventrikkene til arteriene.

    Hjertearbeid

    Hjertet samler rytmisk: sammentrekninger veksler med avslapping. Sammentrekningen av hjertet kalles systole, og avslapning kalles diastol. Hjertesyklusen er en periode som spenner over en sammentrekning og en avslapning. Den varer 0,8 s og består av tre faser: Fase I - sammentrekning (systole) av atriaen - varer 0,1 s; Fase II - sammentrekning (systole) av ventriklene - varer 0,3 s; Fase III - en generell pause - og atria og ventrikkene er avslappet - varer 0,4 s. I hvile er den voksne hjertefrekvensen 60-80 ganger per minutt. Myokardiet er dannet av en spesiell strikket muskuløs vevd kontrakting ufrivillig. Automatisering er karakteristisk for hjertemuskelen - evnen til å trekke seg under virkningen av impulser som oppstår i selve hjertet. Dette skyldes de spesielle cellene som ligger i hjertemusklen, hvor excitasjoner virker rytmisk.

    Fig. 1. Ordning av hjertets struktur (vertikal seksjon):

    1 - muskelvev i høyre ventrikel, 2 - papillære muskler, hvorav anstrengte filamenter (3) festet til ventilen (4) som befinner seg mellom atrium og ventrikel, avreise, 5 - høyre atrium, 6 - inferior vena cava åpning; 7 - overlegen vena cava, 8 - septum mellom atria, 9 - åpninger av fire lungevev; 10 - høyre atrium, 11 - muskelvegg i venstre ventrikel, 12 - septum mellom ventrikler

    Automatisk sammentrekning av hjertet fortsetter med isolasjon fra kroppen. Samtidig passerer eksitasjonen som kommer til ett punkt over til hele muskelen og alle dens fibre samler seg samtidig.

    I hjertet er det tre faser. Først - atriekontraksjonen, den andre - ventrikulær - systole, den tredje - den samtidige rasslablenie atriene og ventriklene - diastole, eller pause i den siste fase av de to atriene fylles med blod årer og den passerer fritt inn i ventriklene. Blodet som kommer inn i ventriklene skyver atriale ventiler fra nedre side og de lukker. Med reduksjon av begge ventrikkene i hulrommene øker blodtrykket og det kommer inn i aorta og lungearterien (i de store og små blodsirkulasjonene). Etter sammentrekning av ventriklene begynner avslapningen. En pause blir fulgt av en sammentrekning av atria, deretter ventriklene, etc.

    Perioden fra en atriell sammentrekning til en annen kalles hjertesyklusen. Hver syklus varer 0,8 s. Fra denne tiden er atriell sammentrekning 0,1 s, ventrikulær sammentrekning er 0,3 s, og den totale hjertepause varer 0,4 s. Hvis hjertefrekvensen øker, reduseres tiden til hver syklus. Dette skyldes hovedsakelig forkortelsen av hjertets totale pause. Ved hver sammentrekning gir begge ventriklene samme mengde blod inn i aorta og lungearterien (ca. 70 ml i gjennomsnitt), som kalles blodets slagvolum.

    Hjertets arbeid reguleres av nervesystemet, avhengig av effekten av det indre og ytre miljøet: konsentrasjonen av kalium- og kalsiumioner, skjoldbruskhormon, hvilestilling eller fysisk arbeid, følelsesmessig stress. To typer sentrifugale nervefibre som tilhører det autonome nervesystemet, passer til hjertet som arbeidslegeme. Et par nerver (sympatiske fibre) med irritasjon styrker og øker hjertekontraksjonene. Når et annet par nerver (en gren av vagusnerven) stimuleres, svekker impulser til hjertet dets aktivitet.

    Hjertets arbeid er knyttet til aktiviteten til andre organer. Hvis eksitasjonen overføres til sentralnervesystemet fra arbeidsorganene, blir det overført fra sentralnervesystemet til nerver som styrker hjertefunksjonen. Så ved refleks er det etablert korrespondansen mellom aktiviteten til ulike organer og hjertets arbeid. Hjertet samler 60-80 ganger i minuttet.

    Veggene i arterier og blodårer består av tre lag: det indre (tynt lag av epitelceller), det midtre (tykke lag av elastiske fibre og celler i glatt muskelvev) og ytre (løs bindevev og nervefibre). Kapillærene består av et enkelt lag av epitelceller.

    Arterier er fartøy gjennom hvilke blodet strømmer fra hjertet til organer og vev. Veggene består av tre lag. De følgende typer av arterier: arterie elastisk Type (nærmest sentrum av store blodkar), muskulære typen arteriene (middels og små arterier som gir blodstrømningsmotstand og derved regulere strømmen av blod til kroppen) og arterioler (siste forgrening arterier, passerer i kapillærer).

    Kapillærene er tynne kar, der væsker, næringsstoffer og gasser byttes mellom blod og vev. Veggen består av et enkelt lag av epitelceller.

    Åre er de fartøyene gjennom hvilke blodet strømmer fra organer til hjertet. Veggene deres (så vel som ved arterier) består av tre lag, men de er tynnere og fattigere av elastiske fibre. Derfor er venene mindre elastiske. De fleste vener er utstyrt med ventiler som hindrer tilbakestrømning av blod.

    Anatomi og fysiologi av hjertet: struktur, funksjon, hemodynamikk, hjertesyklus, morfologi

    Strukturen i hjertet av enhver organisme har mange karakteristiske nyanser. I ferd med fylogenese, det vil si utviklingen av levende organismer til mer komplisert, får hjertet av fugler, dyr og mennesker seg til fire kamre i stedet for to kamre i fisk og tre kamre i amfibier. En slik kompleks struktur passer best for å separere strømmen av arterielt og venøst ​​blod. I tillegg innebærer anatomien i det menneskelige hjerte mange av de minste detaljene, som hver utfører sine strengt definerte funksjoner.

    Hjerte som organ

    Så er hjertet ikke noe mer enn et hul organ bestående av spesifikt muskelvev, som utfører motorfunksjonen. Hjertet er plassert i brystet bak brystbenet, mer til venstre, og dets lengdeakse er rettet anteriorly, venstre og nedover. Forsiden av hjertet er grenser av lungene, nesten helt dekket av dem, og etterlater bare en liten del rett ved siden av brystet fra innsiden. Grensene til denne delen kalles ellers absolutt kardial sløvhet, og de kan bestemmes ved å trykke på brystveggen (perkusjon).

    Hos mennesker med en normal forfatning har hjertet en semi-horisontal posisjon i brysthulen, hos personer med asthenisk grunnlov (tynn og høy) det er nesten vertikal, og i hypersthenikker (tett, trangt, med stor muskelmasse) er det nesten horisontalt.

    Hjertets bakvegg ligger ved siden av spiserøret og store større fartøy (til thoracale aorta, den dårligere vena cava). Den nedre delen av hjertet ligger på membranen.

    ekstern struktur av hjertet

    Aldersfunksjoner

    Menneskets hjerte begynner å danne seg i den tredje uken i prenatalperioden og fortsetter gjennom hele svangerskapet, som går fra stadier til enkeltkammerhulrom til hjertekammeret.

    hjerteutvikling i prenatalperioden

    Dannelsen av fire kamre (to atria og to ventrikler) oppstår allerede i de første to månedene av svangerskapet. De minste strukturer er helt dannet til slekten. Det er i de første to månedene at hjertet av embryoet er mest utsatt for den negative påvirkning av noen faktorer på den fremtidige moren.

    Fosterets hjerte deltar i blodet gjennom kroppen, men det utmerker seg ved blodsirkulasjonssirkler - fosteret har ikke sin egen puste av lungene, og det "puster" gjennom blod i blodet. I hjertet av fosteret er det noen åpninger som gjør at du kan "slå av" den pulmonale blodstrømmen fra sirkulasjonen før fødselen. Under fødsel, ledsaget av det første barnets første gråt, og derfor, når det øker intratorakalt trykk og trykk i hjertet av babyen, lukkes disse hullene. Men dette er ikke alltid tilfelle, og de kan forbli hos barnet, for eksempel et åpent ovalt vindu (bør ikke forveksles med en slik feil som en atriell septalfeil). Et åpent vindu er ikke en hjertefeil, og etter hvert vokser barnet etter hvert som barnet vokser.

    hemodynamikk i hjertet før og etter fødselen

    Et nyfødt barns hjerte har en avrundet form, og dens dimensjoner er 3-4 cm i lengden og 3-3,5 cm i bredden. I det første året av et barns liv, øker hjertet betydelig i størrelse og lengre enn i bredden. Massen av hjertet til en nyfødt baby er omtrent 25-30 gram.

    Etter hvert som babyen vokser og utvikler, vokser hjertet også, noen ganger betydelig foran utviklingen av selve organismen etter alder. Ved en alder av 15 år øker massen av hjertet nesten ti ganger, og volumet øker mer enn fem ganger. Hjertet vokser mest intensivt opptil fem år, og deretter under pubertet.

    I en voksen er størrelsen på hjertet ca. 11-14 cm i lengde og 8-10 cm i bredden. Mange tror med rette at størrelsen på hver persons hjerte tilsvarer størrelsen på hans knyttneve. Massen av hjertet hos kvinner er om lag 200 gram, og hos menn - 300-350 gram.

    Etter 25 år begynner endringer i bindevevet i hjertet, som danner hjerteventilene. Elasticiteten er ikke den samme som i barndommen og ungdommen, og kantene kan bli ujevne. Når en person vokser, og da en person blir eldre, skjer endringer i alle hjertets strukturer, så vel som i fartøyene som mate den (i kranspulsårene). Disse endringene kan føre til utvikling av mange hjertesykdommer.

    Anatomiske og funksjonelle funksjoner i hjertet

    Anatomisk er hjertet et organ delt av skillevegger og ventiler i fire kamre. De "øvre" to kalles atria (atrium), og "nedre" to - ventrikkene (ventricles). Mellom høyre og venstre atria er det interatriale septumet, og mellom ventriklene - interventricular. Normalt har disse partisjonene ikke hull i dem. Hvis det er hull, fører dette til blanding av arterielt og venøst ​​blod, og følgelig til hypoksi av mange organer og vev. Slike hull kalles feil i septum og er relatert til hjertefeil.

    grunnleggende struktur av hjertekamrene

    Grensene mellom de øvre og nedre kamrene er atrio-ventrikulære åpninger - venstre, dekket med mitralventilene, og høyre, dekket med tricuspid-ventiler. Septumets integritet og den riktige driften av ventilens cusps forhindrer blanding av blodstrømmen i hjertet, og bidrar til en klar enveisbevegelse av blod.

    Aurler og ventrikler er forskjellige - atria er mindre enn ventrikkene, og mindre veggtykkelse. Så gjør muren til auriklene omtrent tre millimeter, en vegg av en høyre ventrikel - ca. 0,5 cm, og igjen - ca 1,5 cm.

    Atria har små fremspring - ører. De har en ubetydelig sugefunksjon for bedre blodinjeksjon i atriell kavitet. Det høyre atriumet i nærheten av øret hans strømmer inn i munnen av vena cava, og til venstre lungeårene på fire (mindre ofte fem). Den pulmonale arterien (vanligvis referert til som lungestammen) til høyre og aortalampen til venstre strekker seg fra ventriklene.

    strukturen i hjertet og dets fartøy

    På innsiden er hjerte og øvre kamre også forskjellige og har sine egne egenskaper. Atriens overflate er jevnere enn ventriklene. Fra ventilringen mellom atriumet og ventrikkelen kommer tynne bindevevsventiler - bicuspid (mitral) til venstre og tricuspid (tricuspid) til høyre. Den andre kanten av bladet vender inn i ventrikkene. Men for at de ikke henger fritt, støttes de, som det var, av tynne senetråder, kalt akkorder. De er som fjærer, strukket når lufteventilene lukkes og kontrakteres når ventilene åpnes. Akkorder stammer fra de papillære musklene i ventrikulærveggen - bestående av tre i høyre og to i venstre ventrikel. Derfor har det ventrikulære hulrommet en grov og humpete indre overflate.

    Funksjonene til atria og ventrikler varierer også. På grunn av det faktum at atriene presse blod inn i ventriklene må være, i stedet for i en stor og lange fartøyer for å overvinne motstanden i muskelvev de har minimal, slik at atriene er mindre og veggene er tynnere enn for ventriklene. Ventrikkene skyver blod inn i aorta (til venstre) og inn i lungearterien (høyre). Forhåpentligvis er hjertet delt inn i høyre og venstre halvdel. Den høyre halvdelen er bare for flyt av venet blod, og venstre er for arterielt blod. "Riktig hjerte" er skjematisk indikert i blått og "venstre hjerte" i rødt. Normalt blander disse strømmene aldri.

    hjertehemodynamikk

    En hjertesyklus varer ca. 1 sekund og utføres som følger. I det øyeblikket fyller blodet med atria, slapper sine vegger - atriell diastol forekommer. Ventiler i vena cava og lungene er åpne. Tricuspid og mitralventiler er stengt. Da strammer de atriale vegger og skyver blodet inn i ventriklene, tricuspid og mitralventilene åpnes. På dette tidspunktet opptrer systole (sammentrekning) av atria og diastol (avslapping) av ventriklene. Etter at blodet er tatt av ventrikkene, lukker tricuspid og mitralventilene, og ventiler av aorta og lungearterien åpnes. Videre blir ventriklene (ventrikulær systole) redusert, og atria blir igjen fylt med blod. Det kommer en vanlig diastol av hjertet.

    Hovedfunksjonen til hjertet er redusert til pumpingen, det vil si å skyve et bestemt blodvolum i aorta med slikt trykk og hastighet at blodet blir levert til de fjerneste organer og til de minste kroppene i kroppen. Videre skyves arterielt blod med høyt innhold av oksygen og næringsstoffer, som kommer inn i venstre halvdel av hjertet fra lungekarrene (presset til hjertet gjennom lungene), presses inn i aorta.

    Venøst ​​blod, med lavt innhold av oksygen og andre stoffer, samles inn fra alle celler og organer med et system med hule vener, og strømmer inn i høyre halvdel av hjertet fra øvre og nedre hule vener. Deretter skyves venøst ​​blod ut fra høyre ventrikel inn i lungearterien og deretter inn i lungekarene for å utføre gassutveksling i lungens alveoler og for å berike med oksygen. I lungene samles arterielt blod i lungevevene og blodårene, og strømmer igjen inn i venstre halvdel av hjertet (i venstre atrium). Og så regelmessig utfører hjertet blodet gjennom kroppen med en frekvens på 60-80 slag per minutt. Disse prosessene er betegnet ved begrepet "blodsirkulasjonskretser". Det er to av dem - små og store:

    • Liten sirkel omfatter strømningen av venøst ​​blod fra høyre atrium gjennom Trikuspidalklaff inn i høyre hjertekammer - deretter inn i lungearterien - videre inn i arterien lunge - oksygenrikt blod inn i lunge alveolene - strømmen av arterielt blod til de øyeblikk vein lungene - lunge vene - venstre atrium.
    • Den store sirkel omfatter strømningen av arterielt blod fra venstre atrium gjennom Mitralklaff inn i venstre hjertekammer - gjennom aorta i det arterielle treet av alle organer - etter gassutveksling i vev og organer i blodet blir venøse (med et høyt innhold av karbondioksyd i stedet for oksygen) - heretter venøse seng organene - i vena cava systemet er i høyre atrium.

    Video: Kortets anatomi og hjertesyklus

    Morfologiske egenskaper i hjertet

    For at fibrene i hjertemusklen skal kunne trekke seg synkront, er det nødvendig å ta med elektriske signaler til dem, noe som spenner opp fibrene. Dette er en annen kapasitet i hjertet - ledningen.

    Ledningsevne og kontraktilitet er mulig på grunn av at hjertet i den autonome modusen genererer strøm i seg selv. Disse funksjonene (automatisme og spenning) er gitt av spesielle fibre, som er en del av det ledende systemet. Den sistnevnte er representert av elektriske aktive celler i sinusnoden, atrio-ventrikulærknuten, bunten av Hans (med to ben - høyre og venstre), samt Purkinje-fibre. I tilfelle når en pasient har myokardskader, påvirker disse fibrene, utvikler en hjerterytmeforstyrrelse, ellers kalt arytmier.

    Normalt stammer den elektriske impulsen i cellene i sinusnoden, som ligger i området for høyre atrielle appendage. I en kort periode (omtrent en halv millisekund) sprer pulsen gjennom det atriale myokardium og går deretter inn i cellene i det atrio-ventrikulære veikrysset. Vanligvis sendes signaler til AV-noden langs tre hovedbaner - Wenkenbach, Torel og Bachmann bjelker. AV-knuteceller momentoverføring tiden er forlenget til 20-80 millisekunder, da pulsene faller gjennom det høyre og venstre ben (så vel som de fremre og bakre grener av venstre ben) ventriculonector til Purkinjefibre, og som et resultat av arbeids myokardium. Frekvensen for overføring av pulser i alle baner er lik hjertefrekvensen og er 55-80 pulser per minutt.

    Så, myokardiet eller hjertemuskelen er den midtre kappen i hjertevegget. Den indre og ytre skallen er bindevev, og kalles endokardiet og epikardiet. Det siste laget er en del av perikardialposen, eller hjertet "skjorte". Mellom den indre brosjyren av perikardiet og epikardiet dannes et hulrom fylt med en meget liten mengde væske for å sikre en bedre glidning av perikardets brosjyrer ved hjertefrekvens. Vanligvis er volumet av væske opptil 50 ml, overskytelsen av dette volumet kan indikere perikarditt.

    strukturen av hjertevegg og skall

    Blodforsyning og innervering av hjertet

    Til tross for at hjertet er en pumpe for å gi hele kroppen oksygen og næringsstoffer, trenger den også arterielt blod. I denne sammenheng har hele veggen i hjertet et velutviklet arterielt nettverk, som er representert ved en forgrening av koronararteriene. Munnen til høyre og venstre kranspulsårer avviker fra aorta rot og er delt inn i grener, trer inn i tykkelsen av hjertevegget. Hvis disse store arteriene blir tilstoppet med blodpropper og aterosklerotiske plakk, vil pasienten utvikle et hjerteinfarkt, og orgelet vil ikke lenger kunne utføre sine funksjoner fullt ut.

    plassering av kranspulsårene som leverer hjertemuskelen (myokard)

    Frekvensen som hjertet slår på, påvirkes av nervefibre som strekker seg fra de viktigste nervelinjene - vagusnerven og den sympatiske stammen. De første fibrene har evnen til å senke frekvensen av rytmen, sistnevnte - for å øke frekvensen og styrken til hjerterytmen, det vil si, virke som adrenalin.

    Avslutningsvis bør det bemerkes at anatomi av hjertet kan være noen avvik hos enkelte pasienter, så å bestemme normen eller patologi hos mennesker er i stand til lege etter eksamen, kan de mest informative visualisering av det kardiovaskulære systemet.

    Hjertet

    Hjertet er det sentrale organet i sirkulasjonssystemet, som sikrer bevegelse av blod gjennom karene.

    anatomi

    Fig. 1-3. Menneskelig hjerte Fig. 1. Åpent hjerte. Fig. 2. Ledende system av hjertet. Fig. 3. Hjerteskader: 1 - øvre vena cava; 2 - aorta; 3 - venstre auricle; 4 - aortaklaff; 5 - sommerfuglventil; 6 - venstre ventrikkel; 7 - papillære muskler; 8 - interventricular septum; 9 - høyre ventrikel; 10 - tricuspid ventil; 11 - høyre atrium 12 - inferior vena cava; 13 - sinus node; 14 - atrioventrikulær knutepunkt; 15 - trunk av en atrioventrikulær gjeng; 16 - høyre og venstre ben av den atrioventrikulære bunten; 17 - høyre koronararterie; 18 - den venstre kranspulsåren; 19 - stor hjerte i hjertet.

    Menneskets hjerte er en firekammer muskelpose. Den ligger i den fremre mediastinum, hovedsakelig i venstre halvdel av brystet. Baksiden av hjertet ved siden av membranen. Det er omgitt på alle sider av lungene, med unntak av den delen av den fremre overflaten rett ved siden av brystveggen. Hos voksne er lengden på hjertet 12-15 cm, den transversale størrelsen er 8-11 cm, og den fremre og bakre størrelsen er 5-8 cm. Vekten av hjertet er 270-320 g. Hjertets vegger dannes hovedsakelig av myokardiummuskelvevet. Den indre overflaten av hjertet er foret med en tynn membran - endokardiet. Den ytre overflaten av hjertet er dekket med en serøs membran - epikardiet. Den sistnevnte, på nivået med store fartøy som avgår fra hjertet, svinger utover og nedover og danner perikardiet (perikardiet). Den utvidede bakre øvre delen av hjertet kalles basen, den smale fremre og underre delen kalles spissen. Hjertet består av to atria plassert i sin øvre del, og to ventrikler plassert i underdelen. Den langsgående septum i hjertet er delt inn i to halvdeler som ikke er sammenkoblet - høyre og venstre, som hver består av atrium og ventrikel (figur 1). Det høyre atrium er koblet til høyre ventrikel, og venstre atrium med venstre ventrikel har atriale ventrikulære åpninger (høyre og venstre). Hvert atrium har en hul prosess som kalles øret. De øvre og nedre hule venene som bærer venøst ​​blod fra den systemiske sirkulasjonen og hjertens blodårer strømmer inn i høyre atrium. Fra høyre ventrikel kommer lungestammen, gjennom hvilken venet blod kommer inn i lungene. Fire pulmonære vener flyter inn i venstre atrium, som bærer oksygenrikt arterielt blod fra lungene. Aorta utgår fra venstre ventrikel, gjennom hvilket arterielt blod ledes inn i systemisk sirkulasjon. Hjertet har fire ventiler som regulerer retningen for blodstrømmen. To av dem befinner seg mellom atria og ventrikler, som dekker de atrioventrikulære åpningene. Ventilen mellom høyre atrium og høyre ventrikel består av tre cusps (tricuspid ventil), mellom venstre atrium og venstre ventrikel - av to cusps (bicuspid eller mitral, ventil). Ventilene til disse ventiler dannes ved duplisering av hjertets indre fôring og er festet til den fibrøse ringen som begrenser hver atrioventrikulær åpning. Senefilamentene er festet til ventilens frie kant, og forbinder dem med papillære muskler plassert i ventrikkene. Sistnevnte hindrer "reversering" av ventilklemmene i atriellhulen ved tiden for ventrikulær sammentrekning. De to andre ventiler er plassert ved inngangen til aorta og lungekroppen. Hver av dem består av tre semilunar demper. Disse ventiler, som lukkes under avslapning av ventriklene, forhindrer tilbakestrømning av blod i ventriklene fra aorta og lungekroppen. Fordelingen av høyre ventrikel, hvorfra lungestammen begynner, og av venstre ventrikel, hvor aorta stammer, kalles arteriekeglen. Tykkelsen på muskellaget i venstre ventrikel - 10-15 mm, i høyre ventrikel - 5-8 mm og i atria - 2-3 mm.

    I myokardiet er det et kompleks av spesifikke muskelfibre som utgjør hjerteledningssystemet (figur 2). I veggen til høyre atrium, nær munnen til den overlegne vena cava, er det en sinusknutepunkt (Kisa-Flek). En del av fibrene i denne knuten i området av tricuspidventilens base danner en annen knute - atrioventrikulær (Asoff - Tavara). Fra ham begynner den atrioventrikulære bunken av Hans, som i intervensjonsseptum er delt inn i to bein - høyre og venstre, går til de tilsvarende ventriklene og slutter under endokardium-separate fibre (Purkinje-fibre).

    Blodforsyning av hjertet skjer gjennom koronararteriene, høyre og venstre, som avviker fra aorta-pæren (figur 3). Den høyre kranspulsåren forsyner blod hovedsakelig til hjerteets bakvegg, på baksiden av intervensjonens septum, høyre ventrikel og atrium, og delvis venstre ventrikel. Den venstre kranspulsåren forsyner venstre ventrikel, den fremre intervensjonsseptum og venstre atrium. Grenene til venstre og høyre kranspulsårene, som bryter opp i de minste grenene, danner et kapillært nettverk.

    Venøst ​​blod fra kapillærene gjennom hjernens blodårer går inn i høyre atrium.

    Innerveringen av hjertet utføres av grenene til vagusnerven og grenene til det sympatiske stammen.

    Fig. 1. Innsnitt av hjertet gjennom atria og ventrikler (forfra). Fig. 2. Arterier av hjertet og koronar sinus (atria, pulmonal stamme og aorta fjernet, utsikt ovenfra). Fig. 3. Tverrsnitt av hjertet. Jeg - den øvre overflaten av atriene II - Hule av høyre og venstre atria, aorta og lungeåpning; III - snitt på nivået av de atrioventrikulære åpningene; IV, V og VI - deler av høyre og venstre ventrikkel; VII - regionen av hjertepunktet. 1 - atrium synd. 2 - v. pulmonalis synd. 3 - valva atrioventricularis synd. 4 - ventrikulus synd. 5 - apex cordis; 6 - septum interventriculare (pars muscularis); 7 - m. papillaris; 8 - ventrikulus dext. 9 - valva atrioventricularis dext. 10 - septum interventriculare (pars membranacea); 11 - valvula sinus coronarii; 12 mm. pectinati; 13 - v. cava inf. 14 - atriumdext. 15 - fossa ovalis; 16 - septum interatriale; 17 - vv. pulmonale dext. 18 - trunkus pulmonalis; 19 - auricula atrii sin. 20 - aorta; 21 - auricula atrii dext. 22 - v. cava sup. 23 - trabecula septomarginal; 24 - trabeculae carneae; 25 - chordae tendineae; 26 - sinus coronarius; 27 - cuspis ventralis; 28 - cuspis dorsalis; 29 - cuspis septalis; 30 - cuspis post. 31 - cuspis ant.; 32 - a. coronaria synd. 33 - a. coronaria dext.

    Funksjoner av strukturen av det menneskelige hjerte

    For å sikre tilstrekkelig ernæring av indre organer, pumper hjertet et gjennomsnitt på syv tonn blod per dag. Dens størrelse er lik den knyttede knyttneve. I løpet av livet er dette organet ca 2,55 milliarder slag. Den endelige formasjonen av hjertet oppstår ved den tiende uken med intrauterin utvikling. Etter fødselen endres typen hemodynamikk dramatisk - fra fôring på moderens placenta til uavhengig, lungebeskyttelse.

    Les i denne artikkelen.

    Strukturen av det menneskelige hjerte

    Muskelfibre (myokard) er den overordnede typen hjerteceller. De utgjør sin masse og er i mellomlaget. Utenfor er kroppen dekket av et epikardium. Han er på feste av aorta og pulmonal arterie innpakket, på vei nedover. Dermed er perikardiet dannet rundt hjertet. Den inneholder ca. 20 - 40 ml klar væske, som ikke tillater at pjokkene holder seg sammen og blir skadet under sammentrekninger.

    Det indre skallet (endokardiet) er foldet i halve ved krysset mellom atriene i ventrikkene, munnene til aorta og lungestammen, danner ventiler. Deres klaff er festet til bindevevsringen, og den frie delen beveger blodstrømmen. For å unngå inversjon av delene i atriumet, er de festet til tråden (akkord), som strekker seg fra ventrikels papillære muskler.

    Hjertet har følgende struktur:

    • tre skall - endokardium, myokard, epikardium;
    • perikardiepose;
    • arterielle blodkamre - venstre atrium (LP) og ventrikel (LV);
    • avdelinger med venøst ​​blod - høyre atrium (PP) og ventrikkel (RV);
    • ventiler mellom LP og LV (mitral) og tre-bladet til høyre;
    • to ventiler avgrenser ventriklene og store karene (aorta til venstre og lungearterien til høyre);
    • septum deler hjertet i høyre og venstre halvdel;
    • efferente fartøy, arterier - lunge (venøs blod fra bukspyttkjertelen), aorta (arterielt blod fra LV);
    • bringe vener - pulmonal (med arterielt blod) inn i LP, hule vener faller inn i PP.

    Vi anbefaler at du leser artikkelen om små abnormiteter i hjertet. Fra det vil du lære om årsakene til patologi hos barn, ungdom og voksne, symptomer på problemet og diagnosemetoder, sykdomsbehandling og prognose for pasienter.

    Og her mer om plasseringen av hjertet til høyre.

    Interne anatomi og strukturelle egenskaper av ventiler, atria, ventrikler

    Hver del av hjertet har sin egen funksjon og anatomiske egenskaper. Generelt er LV kraftigere (sammenlignet med den rette), da den fremmer blod i arteriene med innsats, overvinne den høye motstanden til vaskulære vegger. PP er mer utviklet enn venstre, det tar blod fra hele kroppen, og venstre bare fra lungene.

    Høyre atrium

    Mottar blod fra hule årer. Ved siden av dem er et ovalt hull som forbinder PP og LP i hjertet av fosteret. I en nyfødt, lukkes den etter åpningen av pulmonal blodstrøm, og deretter helt overgrodd. I systole (sammentrekning) passerer venøs blod inn i bukspyttkjertelen gjennom en tricuspid (tricuspid) ventil. PP har et ganske kraftig myokard og en kubisk form.

    Venstre atrium

    Arterielt blod fra lungene passerer i LP gjennom 4 lungevev, og strømmer deretter gjennom hullet i LV. Veggene til LP er 2 ganger tynnere enn høyre. Formen på LP er lik en sylinder.

    Høyre ventrikel

    Det har utseendet til en omvendt pyramide. Kapasiteten til bukspyttkjertelen er ca. 210 ml. Det kan deles i to deler - den arterielle (pulmonale) kegle og selve kaviteten i ventrikkelen. I den øvre delen er det to ventiler: tricuspid og lungekropp.

    Venstre ventrikel

    Det ser ut som en invertert kjegle, den nederste delen danner hjertepunktet. Tykkelsen på myokardiet er den største - 12 mm. På toppen er det to hull - for å koble til aorta og PL. Begge er blokkert av ventiler - aorta og mitral.

    Tricuspid ventil

    Den høyre atrioventrikulære ventilen består av en komprimert ring som begrenser åpningen og ventilene, det kan ikke være 3, men fra 2 til 6.

    Funksjonen til denne ventilen er å forhindre utslipp av blod i PP under systole RV.

    Lungeventil

    Han tillater ikke at blodet går tilbake til bukspyttkjertelen etter reduksjonen. Som en del av det er klaffene tett i form til halvmåne. I midten av hver er det en knute som forsegler lukningen.

    Mitralventil

    Den har to dører, den ene er i fronten og den andre i ryggen. Når ventilen er åpen, strømmer blod fra LP til LV. Når ventrikelen er komprimert, er dens deler lukket for å sikre at blodet kommer inn i aorta.

    Aortaklaff

    Formet av tre halvmånefliker. Som lunge inneholder ikke filamenter som holder rammen. I området av ventilen utvides aorta og har riller kalt sines.

    Sirkulasjon av blodsirkulasjon

    Gassutveksling skjer i lungens alveoler. De kommer blod fra lungearterien, forlater bukspyttkjertelen. Til tross for navnet bærer lungearteriene blodet av den venøse sammensetningen. Etter utslipp av karbondioksid og oksygenering gjennom lungeårene, går blodet inn i LP. Dette danner en liten sirkel av blodstrøm, kalt pulmonal.

    En stor sirkel dekker hele kroppen. Fra LV spredes arterielt blod gjennom alle fartøy, fôring av vev. Berøvet oksygen, venøs blod flyter fra de hule venene til PP, deretter i bukspyttkjertelen. Sirkler er lukket mellom seg selv, og gir en kontinuerlig strøm.

    For at blod skal komme inn i myokardiet, må det først passere inn i aorta og deretter inn i de to kranspulsårene. De er så navngitte på grunn av forgreningenes form, som ligner en krone (krone). Venøst ​​blod fra hjertemuskelen går hovedsakelig i koronar sinus. Den åpner til høyre atrium. Denne sirkelen av blodsirkulasjon betraktes som den tredje, koronare.

    Se på videoen om menneskets hjerte:

    Hva er den spesielle strukturen til et barns hjerte?

    Opp til seks år er hjertet i form av en ball på grunn av de store atriene. Veggene er lett strukket, de er mye tynnere enn hos voksne. Et nettverk av sennefilamenter som fester ventilene til ventiler og papillære muskler, blir gradvis dannet. Full utvikling av alle strukturer i hjertet slutter ved fylte 20 år.

    Opptil to år danner hjertet trykk høyre kammer, og deretter en del av venstre. Ved vekstraten opp til 2 år er atria i spissen, og etter 10 - ventrikkene. Inntil ti år er LV foran høyre.

    Hovedfunksjonene til myokardiet

    Hjertemusklen er forskjellig i struktur fra alle andre, da den har flere unike egenskaper:

    • Automatisme - spenning under handlingen av egne bioelektriske pulser. Først blir de dannet i sinuskoden. Han er den viktigste pacemakeren, genererer signaler rundt 60 - 80 per minutt. De underliggende cellene i det ledende systemet er noder i rekkefølge 2 og 3.
    • Ledningsevnen - impulser fra formasjonsstedet kan spredes fra sinusnoden til PP, LP, atrioventrikulær knutepunkt, gjennom ventrikulær myokardium.
    • Angst - som svar på ekstern og intern stimuli aktiveres myokardiet.
    • Kontraktivitet - evnen til å krympe når det er opphisset. Denne funksjonen skaper pumpeegenskaper i hjertet. Kraften som myokardiet reagerer på en elektrisk stimulus avhenger av trykket i aorta, graden av strekking av fibrene i diastolen og volumet av blod i cellene.

    Hvordan gjør hjertet

    Hjertets funksjon går gjennom tre faser:

    1. Reduksjon av PP, LP og avslapping av bukspyttkjertelen og LV med åpning av ventiler mellom dem. Overgang av blod til ventrikkene.
    2. Ventrikulær systole - de vaskulære ventiler åpner, blodet strømmer til aorta og lungearterien.
    3. Generell avslapping (diastol) - blod fyller atria og presser på ventiler (mitral og tricuspid) frem til deres avsløring.

    Under perioden med sammentrekning av ventriklene, er trykket mellom blodet og ventilene i atria lukket av blodtrykk. I diastol faller trykket i ventriklene, blir det lavere enn i store fartøy, så lukkes deler av lunge- og aortaklaffene slik at blodstrømmen ikke kommer tilbake.

    Vi anbefaler å lese en artikkel om medfødte hjertefeil. Fra det vil du lære om årsakene til utviklingen av patologi, klassifisering og tegn på feil, diagnose og behandlingsmuligheter.

    Og her mer om auskultasjon av hjertet.

    Hjertet gir blod i en stor og liten sirkel takket være det koordinerte arbeidet med atriene, ventrikkene, store kar og ventiler. Myokardium har evnen til å produsere en elektrisk impuls, for å lede den fra nodene til automatisme til cellene i ventriklene. Som svar på signalet blir muskelfibrene aktive og kontrakt. Hjertesyklusen består av en systolisk og diastolisk periode.

    En viktig funksjon spilles av kransløpssirkulasjonen. Funksjonene, et lite bevegelsesmønster, blodkar, fysiologi og regulering studeres av kardiologer for mistenkte problemer.

    Et vanskelig hjerteledningssystem har mange funksjoner. Dens struktur, der det er knuter, fibre, avdelinger, så vel som andre elementer, hjelper i hjertets overordnede arbeid og hele hematopoietiske systemet i kroppen.

    På grunn av treningsøkten er atletens hjerte forskjellig fra den gjennomsnittlige personen. For eksempel, når det gjelder slagvolum, rytme. Imidlertid kan den tidligere idrettsutøver eller når det tas stimulanter, begynne sykdommen - arytmi, bradykardi, hypertrofi. For å forhindre dette, er det verdt å drikke spesielle vitaminer og stoffer.

    En kardiolog kan avsløre hjertet til høyre i en ganske voksen alder. Denne anomali er ofte ikke livstruende. Personer som har hjerte til høyre bør bare advare legen, for eksempel før de gjennomfører et EKG, da dataene vil være litt forskjellige fra standardene.

    Det er mulig å identifisere MARS av hjertet hos barn under tre år, ungdom og voksne. Vanligvis går slike uregelmessigheter nesten ubemerket. Ultralyd og andre metoder for å diagnostisere myokardstrukturen brukes til forskning.

    Normalt endres størrelsen på en persons hjerte gjennom livet. For eksempel kan det for voksne og barn være tifold. Fosteret er mye mindre enn barnet. Størrelsen på kamre og ventiler kan variere. Hva om de legger et lite hjerte?

    Hvis det er mistanke om avvik, er det angitt en røntgenstråle av hjertet. Det kan avdekke en skygge i normen, en økning i orgelens størrelse, mangler. Noen ganger utføres radiografi med kontrasterende spiserør, så vel som i en til tre og noen ganger til og med fire fremskrivninger.

    Hvis det er en ekstra septum, kan et treatriumhjerte dannes. Hva betyr dette? Hvor farlig er ufullstendig form i et barn?

    MRI av hjertet utføres i henhold til parametrene. Og selv barn blir undersøkt, indikasjoner for hvilke er hjertefeil, ventiler, koronarbeholdere. MR med kontrast vil vise myokardets evne til å samle væske, vil avsløre svulster.